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ABSTRACT

There is much demand for quantitative models to
aid in comparison of policy options and design of
adaptive management policies for riparian ecosys-
tems. Such models must represent a wide variety of
physical and biological factors that can vary on
space-time scales from meters-seconds to basin-
decades. It is not possible in practice to develop a
complete model for all variation. Incomplete but
still useful models can be developed by using state
variable identification methods that focus scientific
attention on causal pathways of most direct policy
concern, and by using various analytical methods to
provide cross-scale analytical predictions about ef-
fects of microscale variation. The main value of such

models has not been to provide detailed quantita-
tive prescriptions, but to help identify robust, quali-
tative arguments about efficacy of various policy
choices. However, they have not been successful at
representing some important dynamic effects in
riparian systems, where small physical changes
(such as overtopping dikes) and infrequent extreme
physical events can cause habitat changes at large
spatial scales and ecological impacts that last for
decadal or even longer time scales.

Key words: riparian; ecosystem modeling; multi-
scale; hydrologic management; fish; trophic struc-
ture.

INTRODUCTION

Most major riparian ecosystems in North America
have been impacted by water management aimed at
power production, flood protection, and diversions
for consumptive uses. There is broad consensus
among ecologists that these impacts have been
largely negative in terms of natural ecosystem struc-
ture and function (Poff and others 1997), and there
appears to be growing public willingness to consider
(and pay for) quite drastic options like removing
dams from the Columbia River, “deplumbing” the
Florida Everglades, or removing Glen Canyon Dam
from the Colorado River. Evaluation of such options
and comparison of them to less costly mitigative
measures (like partial restoration of seasonality in
flows) has involved the formation of large, interdis-
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ciplinary research teams with mandates to provide
predictions about a wide range of biophysical and
economic impacts, that is, with a very strong man-
date or demand to adopt “ecosystem approaches” to
policy analysis. Attempts to integrate the very com-
plex activities and recommendations of such teams
generally have involved formal mathematical mod-
eling of some sort, and model development has
been plagued by a variety of institutional and
technical problems (Walters 1997). There is growing
interest in treating ecosystem restoration as an
actively adaptive, experimental process (for ex-
ample, experimental flooding in the Grand Canyon;
Collier and others 1997), and modeling is particu-
larly critical in the design of adaptive policies as a
means to identify key uncertainties and to screen
experimental alternatives.

As demand has grown for modeling as a tool for
synthesis and adaptive policy design, administrators
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and managers have been treated to a bewildering
variety of claims from scientists about what model-
ing can and cannot do, and about how to go about
it. These claims range from absurd optimism about
our ability to identify and represent “all the relevant
factors” to complete denial that any useful predic-
tions can be made in the face of ecological complex-
ity. Seldom are people charged with development of
research priorities (or allocation of funding for
modeling activities vs field research) treated to
anything like an objective, scientific ordering of
modeling options in terms of costs, relative predic-
tive ability, and possible pitfalls.

Much of the debate about how to approach
modeling of riparian ecosystem processes arises
from grossly different disciplinary perceptions about
how to deal with dynamics at multiple space-time
scales. Hydrologists, chemists, and geomorpholo-
gists most often pretend good “mechanistic” under-
standing of fine-scale (centimeters to meters, seconds
to hours) processes like sediment erosion-deposi-
tion and reaction kinetics and consider it largely a
matter of simple (but perhaps computationally
costly) summation or integration to see how such
processes affect larger-scale state measures, such as
turbidity or channel morphology; furthermore, they
expect such integration to produce damping of
effects across scales (effects of any local change
disappear smoothly over time and space). They
further point to the need for detailed local modeling
to represent effects of fine-scale policy actions, such
as strong diurnal fluctuation in releases of water
from hydroelectric dams to meet corresponding
fluctuations in power demand. In contrast, ecolo-
gists more often are concerned with responses at
much larger-longer scales, from weeks to months
and km? for animal recruitment processes up to
decades for basin-scale development and succession
of riparian vegetation. They may admit the impor-
tance of some fine-scale physical and chemical
“events” (such as short floods that can scour riparian
vegetation from shorelines and reshape floodplain
habitats) to the larger-scale biological dynamics, but
would not expect simple damping of effects across
scales in view of “active” biological feedback pro-
cesses like animal dispersal and population “out-
breaks” that can generate highly nonlinear propaga-
tion of ecological responses to large scales. This
description of disciplinary approaches is, of course, a
generalization; we have encountered many in-
stances in our riparian modeling efforts where
ecologists focus on very fine spatial and temporal
scales or particular “pet processes.”

This article reviews concepts and modeling meth-
ods that may help to reduce misunderstanding

among scientific disciplines about how to represent
widely divergent space—time scales in riparian eco-
system analysis. Most of the following commentary
is derived from considerable experience (and de-
bate) fostered through adaptive environmental as-
sessment and management (AEAM; Holling 1978;
Walters 1986) processes aimed at producing quanti-
tative predictive models for riparian policy analysis
on major ecosystems ranging from the Florida Ever-
glades (Walters and others 1992) to the Colorado
River in the Grand Canyon. The AEAM process has
been used with variable success since the early
1970s (Walters 1997) to bring together disciplinary
scientists and resource managers in workshop set-
tings where shared interest in model development is
intended to foster careful problem definition, clear
communication, and precise definition of cross-
disciplinary information needs. The main lessons
we have learned from this experience are to (a)
discount claims about the possibility of modeling
everything that might be important; (b) define the
mode structure and variables in reference to policy
issues rather than scientific interests and disciplin-
ary traditions; and (c) use various techniques and
approximations to reduce computational complex-
ity and thereby encourage use of models as games to
sharpen intuition and stimulate imagination rather
than provide precise quantitative predictions.

It is important to recognize that there is a gradient
both in modeling styles and objectives. On the one
extreme, there are very fine-grained, high-resolu-
tion models focused on providing very precise pre-
dictions for a small set of indicators. Such models,
which can be labeled “reductionist models,” are
generally useful for research purposes, and one of
the justifications for modeling in fine detail is to help
identify key microscale processes and events that
may have larger-scale consequences. On the other
extreme, there are the coarse-grained, low-resolu-
tion models that provide relatively imprecise predic-
tions for a large suite of indicators (for example,
various components of an ecosystem) over manage-
ment-relevant time and space scales. Our riparian
modeling experience has had a strong management
focus, pushing us to develop and evaluate models
on the coarse-grained end of the model complexity/
resolution axis. The dilemma that we have encoun-
tered is that there is a strong demand for manage-
ment-focused models that also are fine grained in
detail and resolution. In this article, we describe
various techniques, and their pitfalls, that try and
capture important fine-scale dynamics in simpler
ways so they can be applied in management-
oriented models. We also describe some of the
difficulties and pitfalls in trying to apply fine-
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grained models in these situations. Our discussion is
not intended to discredit fine-grained modeling
approaches, but to describe their limitations in the
context of applied management situations, and
suggest alternative ways of capturing important
fine-grained dynamics in coarse-grained manage-
ment models.

FRACTAL DYNAMIC STRUCTURE AND
THE IMPOSSIBILITY OF CONSTRUCTING
“COMPLETE” ECOSYSTEM MODELS

In most areas of applied ecological modeling like
fisheries stock assessment, we are concerned with
quite limited policy options and management perfor-
mance variables, at particular space-time scales. In
such cases, debates about model complexity and
completeness can be resolved by applying objective
criteria and tests to proposals for including (or
discarding) extra detail and/or breadth of factors:
are the proposed inclusions likely to improve predic-
tions at policy-relevant scales enough to justify costs
of obtaining whatever extra information is needed?
Such heuristic tests are difficult to identify in ripar-
ian ecosystem management settings, where policy
interventions can occur over many scales (from
hourly water release schedules to decadal plans for
flood plain zoning) and where policy interests range
from very local (for example, particular shoreline
and backwater habitats) to basin-scale. Virtually any
modeling effort, from detailed tracking of move-
ment of individual sand grains (or dispersing fish)
through to whole-system mass-energy budgets, can
be justified as contributing directly to “useful” policy
prediction.

The wide range of policy concerns in riparian
settings usually leaves us with three strategic choices
for investment in policy modeling: (a) reductionist:
attempt to develop a single model that describes all
dynamics at the finest possible scale, and predicts
larger-scale responses as emergent properties; (b)
selective: attempt to model dynamics at all scales
simultaneously, but admit that the representation
will be incomplete and will contain many “judge-
ment calls” about what details and variables to
exclude from the analysis; and (c) fragmentary:
develop a set of independent “mini-models” of
particular dynamic relationships and processes that
affect selected policy variables that are of special
concern, with linkage among these models limited
to insights that each might provide about appropri-
ate forms of relationships or parameter values to use
in representation at other scales (for example, a
model for tracking movement of individual sand

particles might give insights about statistical proper-
ties of large-scale sand deposition and erosion rates).

There are at least three reasons that make it
difficult to apply the reductionist approach as a
practical option: (a) fractal structure of the physical
habitat template for riparian ecological processes;
(b) need for extensive model testing and policy
gaming, which are impossible when the model is
computationally complex; and (c) costs of informa-
tion gathering to establish microscale state and
relationships. The second and third of these reasons
are practical consequences of the first.

Fractal structure of habitat templates means that
habitat structure does not become less complex as
we look more closely, yet organisms use pattern and
structure at all scales to minimize energetic costs,
reduce predation risk, and maximize foraging/
growth and reproductive opportunities. A simple
way to understand this issue is to imagine taking a
series of snapshot photos of a riparian ecosystem
from different perspectives, with each photo having
a grain or pixel size that we might use as the “finest”
or most complete model state description. A photo
covering the whole watershed obviously would
show strong downstream pattern in variables like
water clarity, velocity, animal community structure,
and shoreline vegetation. A photo of a single 1-km
“reach” at midstream also would show strong pat-
tern, but now with major physical and biological
differences related to riffle-pool-backwater struc-
ture. A photo of a single 1-m? plot within a riffle in
this reach would again show just as much pattern,
but now between patches representing exposed
rock surfaces, crevices, and the protected undersides
of rocks. Even finer photos might show ecologically
meaningful patterns for at least some organisms, but
the basic point is obvious: no photo or reductionist
scale choice for modeling is “complete” or correct:
with respect to the finest scale represented explicitly
in computations, finer-scale structure has to be
either ignored (for example, treat finer scales as
uniform, homogeneous), or described through sta-
tistical properties (for example, proportion of ben-
thic insects that are on rock surfaces and hence
exposed to fish predation).

Likewise, physical habitat responses and trophic
interactions can be highly structured in time, for
example, insect emergence and fish feeding/preda-
tion interactions are often concentrated in brief
dawn/dusk “bouts” of activity. The importance of
micro time scale interactions becomes particularly
obvious in settings where human disturbances and
manipulations have very “fast” components, such as
diurnal variation in recreational fishing activity or
water releases from reservoirs.
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An important implication of fractal structure for
comparing alternative modeling approaches is that
it is meaningless to invoke distinctions like “mecha-
nistic versus statistical” or “black box versus white
box.” Every model has limited resolution (finest
scale, grain) and hence must contain some essen-
tially statistical description of structure and event
dynamics at finer scales than those represented
explicitly. In short, every model is constructed as a
collection of nasty black boxes and statistical descrip-
tions, no matter how the modeler may try to
disguise these descriptions by explaining them in
terms of physical and biological mechanisms. This
means we should never judge models by how
detailed (and hence “realistic”) they appear to be;
rather, we should judge them by how clearly and
credibly they represent statistical properties of the
cross-scale linkage between the finest patterns/
processes represented explicitly and the very nonran-
dom patterns of even finer-scale dynamics.

Put another way, one of the most dangerous
pitfalls in ecological modeling is to choose some
maximum space—time resolution based on practical
considerations (finest map data, computational re-
sources), then to base descriptions of phenomena at
even finer resolutions on assumptions of homogene-
ity or randomness within each explicit model pixel.
This approach may be simply wasteful if policy
concerns are only about larger scales (there may be
far simpler and statistically defensible ways to make
the larger-scale predictions than by adding up ef-
fects over every component pixel) but worse may
lead to grossly incorrect descriptions of actual statis-
tical patterns. As a simple example, consider the
problem of predicting recreational fishing effort in
some river reach or site (Figure 1). If we base this
prediction on arguments about behavior of a “typi-
cal” angler (homogeneity assumption), we likely
will conclude that effort should be zero unless fish
density is high enough to attract the angler from
alternative sites or activities, and should be high if
the site is the most attractive option available
(Figure 1, top). If instead we base the prediction on
recognition that there is a heterogeneous popula-
tion of potential anglers, so the effort response will
consist of a statistical summation or integration of
individual attraction events, we will predict a very
different response pattern that can be interpreted
precisely as a cumulative probability distribution
rather than a behavioral reaction pattern (Figure 1,
bottom). Obviously the two functional models in
Figure 1 have very different implications for time
dynamics of fishing mortality in relation to changes
in the fish population. These same arguments apply
to physical as well as biological processes; for ex-

—

Effort Response of Individual Anglers

Fish Abundance—=

Effort Summed Over Angler Population

Fish Abundance—=

Figure 1. Differences between the response of individual
anglers to changes in fish abundance (top) and the
aggregate response of all anglers (bottom).

ample, the microscale physics of sediment move-
ment in relation to local velocity/energy field may
be well understood, but equations based on local
physical “laws” may not describe statistical patterns
of large-scale sediment transport.

DEFINING WORKABLE STATE
VARIABLE SETS

Dynamic models have two parts: a set of state
variables representing what a system is like at any
instant, and a set of rules for how these variables
change over time as functions of forcing natural
inputs, policy choices, and past dynamic states. A
central argument in the previous section is that
cross-scale issues should not, and indeed cannot, be
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resolved simply by expanding the state variable set
and expressing rules of change for shorter time
steps. Instead we always need to make a series of
judgment calls about breadth of variables, detail,
and how to incorporate the effects of invisibly fine
dynamics in the rules of change. The ecological
modeling literature unfortunately does not provide
much guidance about how to make these judg-
ments; instead, it offers mainly simplistic arguments
about “top-down” versus “bottom-up” approaches
(start simple and elaborate as necessary or start at
greatest practical detail and aggregate as appropri-
ate). Such arguments miss a very basic point: from
whatever direction the variable selection process is
approached, this process is necessarily an adaptive
one. That is, we never just “build a model;” instead,
we develop a whole series of them, with more or
less explicit thinking at each step about whether to
articulate further detail or discard parts of the
formulation. Experience and literature seldom pro-
vide a complete road map for these steps; instead,
modeling discussions and thinking usually involve
some unpredictable “intuitive jumps” where alterna-
tive approaches (and nasty criticisms) seem to ap-
pear as if by magic. What experienced model devel-
opers actually do, and what we try to enhance in
workshop processes like AEAM (Holling 1978), is to
use various psychological tactics for stimulating
imagination so as to increase the odds of such
intuitive jumps; such tactics range from simple
brainstorming (free association thinking) to encour-
agement of frustration and fear of making embarrass-
ing mistakes.

Through AEA experience with trying many tac-
tics for state variable identification and from dis-
course with participants in AEA workshops, we
have moved gradually toward an eclectic approach
that involves deliberately working from several
directions. In order of priority and timing, these
directions are outward, top-down, and bottom-up
as described in the following subsections.

“Outward” from Key Policy Variables,
Beginning with Factors Responsible for
Change in These Variables

This tactic insures that however fragmentary or
incomplete the “final” working model may be, it will
at least contain a set of causal links or assertions
about factors that directly impact variables of man-
agement interest. For common biophysical variables
like sediment loads and animal population sizes, it
most often results in familiar decompositions of
predictions about change into more manageable
components (for example, loading-suspension-
deposition rates, birth-death rates) that can then be

represented as functions of various factors and
policy choices.

“Top-Down” from Broad Phenomenological
Descriptions of Ecosystem Structure and
Function

Working outward does not always result in state
variable sets that reflect broad understanding about
historical dynamics and basic mass-energy conserva-
tion principles. For example, in development of
Grand Canyon ecosystem models, we did not pay
much attention initially to exotic fish species, con-
centrating instead on physical habitat relationships
of native creatures and potential impacts of improv-
ing that habitat (for example, restoring more natu-
ral flows and temperatures); only when we began to
review broad descriptions of historical change did
we begin to wonder whether “turning back the
clock” on physical factors would work at all, since
irreversible exotic introductions may have done
much damage even before any major habitat alter-
ations occurred. Also, thinking about broad mass
transport relationships and upstream-downstream
shifts from autochothonous to allocthonous produc-
tion sources helped us identify a suite of potentially
negative impacts of physical habitat restoration that
we otherwise might have failed to notice.

“Bottom-Up” from Microscale Process
Arguments and Observations

The essential idea here is not to model everything
possible, but rather to challenge any broad system
description based on the previous two approaches
for consistency with existing understanding of mi-
croscale dynamics, by looking for microscale pro-
cesses and feedback relationships that could unex-
pectedly limit responses at larger scales or “explode”
across scales through threshhold and nonlinear
dynamic effects. Note that this search for “vampires
in the basement” is not based on the pretense that
the best way to obtain a broad prediction is to add
up a lot of small predictions, but rather on the
concern that some “small” effects may have surpris-
ingly large consequences.

The “working outward” tactic (Walters 1986) has
been particularly important in helping prune unnec-
essary complexity from models and for insuring
they attempt to answer the “right” questions. The
top-down and bottom-up tactics are mainly useful
for detecting gaps and inconsistencies in the variable
set defined from policy interests alone. Many scien-
tists are uncomfortable with the priorities above,
preferring instead to begin with disciplinary descrip-
tions of “The System” then adding extra relation-
ships later to represent particular policy impacts; the
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trouble with allowing this to happen is that it most
often results in good models of things that interest
scientists, but weak articulation of things that really
matter to policy (but are often “uninteresting” from
a scientific perspective).

So a key idea in the multiple-model adaptive
approach is not to build any single, “best” model,
but instead to deliberately develop and compare a
whole collection of alternative models. A simple
example of the difference this can make is in
prediction of effects of trophic interactions. Suppose
itis important to make policy predictions about how
changes in the productivity of a “prey” species with
biomass density H will impact biomass P of its
predator(s). The simplest model we might propose
for the biomass “flow” C from H to P would be the
mass action rate C = aHP, where a is rate of effective
search of the predator. Simple predator-prey theory
tells us in this case that we will predict increases in
the productivity of H to result in increases in P, but
not in H, unless some other factor besides food
prevents P from increasing or unless increases in
potential productivity are somehow “shunted” to
creatures that the predator cannot eat. In aquatic
systems, one common recommendation about how
to model the interaction more precisely is to divide
the prey and predator populations into age-size
components, H;, P;, with effective search rates aj
reflecting trophic ontogeny of the predator, so C =
2;a;HiP;, and to track the H and P components over
time by using size—age structure accounting. But if
only this complication is added to the analysis, the
basic qualitative prediction that increases in prey
productivity should result in changes in P but not H
still holds, so articulation of a; rather than just a
single mean a does not mean that we will make
“better” predictions especially if the a; are more
difficult to estimate than mean a. Suppose that in
contrast to the usual size-age “decomposition” of
predictions, we instead divide the prey population
into two behavioral “vulnerability” classes, V and
H-V, where we assume rapid behavioral exchange
between the classes (for example, V might represent
actively feeding prey that are exposed to predation
through feeding behaviors, whereas H-V represents
inactive, hiding prey). If prey move between these
classes at rates k;V (prey moving into hiding) and
k,(H-V) (prey moving out of hiding), then fast
dynamics of exchange along with C = aVP (mass
action encounters, but only with the vulnerable
prey) imply that V will vary over time to track
slower changesin Has V = k,H/(k; + k, + aP). That
is, there will be a “ratio-dependent” predator-prey
interaction (Abrams and Walters 1996) implying
very different macro-scale correlations between prey

productivity and both prey and predator abundance
than would be predicted from simplistic assump-
tions about microscale dynamics. The point of this
example is simple: only when you see the two
approaches side by side does it become obvious that
it might be smarter to invest time and effort in
analysis of behavioral and distribution data (to
obtain insights about the k’s) than to blindly assume
“more is better” by subdividing the populations and
estimating ay’s.

TaAcTIicS FOR REDUCING COMPUTATIONAL
COMPLEXITY

Whereas the state variable identification methods
reviewed above can help to avoid unnecessary or
irrelevant model complexity, for riparian settings
they generally still result in a daunting array of
physical, chemical, and biological variables that
need to be simulated. State-of-the-art disciplinary
approaches to computational representation of some
of these variables would result in massive computa-
tional chores, for example, hydrodynamic velocity
fields usually are simulated on scales of meters-
seconds, and individual-based animal population
models (DeAngelis and Gross 1992; Van Winkle and
others 1993, 1996, 1997) can track hourly or daily
fates of thousands of individuals. It is generally
impractical to simply throw together a collection of
such models into a single system representation.

A variety of tactics can be used to avoid impossible
computational complexity. These fall into two broad
categories: (a) separate execution of some physical
“forcing” calculations (for example, detailed hydro-
dynamic submodels), with only aggregated (larger-
scale) results transferred as inputs to ecological
calculations; and (b) use of various analytical ap-
proximations for average and/or extreme values of
fine-scale variables (“think before you compute”
approaches).

An example of the computational separation
approach is in assessments of water management
options for Glen Canyon Dam on the Colorado
River in the Grand Canyon. There we run a detailed
model (Wiele and Smith 1996) of hourly water
releases and consequent downstream propagation
of stage “waves” from Glen Canyon Dam into the
River, and we store typical diurnal-downstream
patterns from this model (under alternative diurnal
release policies) for input into calculations of aquatic
ecosystem responses, such as changes in benthic
primary production. In North American riparian
settings, agencies like the Bureau of Reclamation
and Core of Engineers have been quite cooperative
about providing expertise and model results for
such physical forcing calculations.
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Analytical approaches for cross-scale representa-
tion generally are based on the assumption that
prediction of changes in “slower” (usually ecologi-
cal) variables can be based on averages or extreme
values of “faster” (usually physical) variables, that
is, that the slower variables do not “see” all of the
finer-scale variation. Three techniques that we have
found particularly useful are (a) variable speed
splitting; (b) analytical integration over microscale
variation; and (c) Lagrangian trajectory sampling.
The following subsections provide more informa-
tion about these techniques.

Variable Speed Splitting

Often we find that rate equations for “fast” (rapidly
changing) variables like number of animals vulner-
able to predators (example in previous section) or
benthic algal biomass imply that these variables will
move to equilibrium values on time scales that are
shorter than are of direct policy interest, and will
change over larger scales in response to slower
changes in factors that influence equilibrium levels
(total number of animals available to become vulner-
able to predators, seasonal changes in water turbid-
ity and temperature). In such cases, we can avoid
much tedious and unnecessary computation and
also obtain useful insights about factors that deter-
mine “average” (equilibrium) variable values, by
simply solving the rate equations for the equilib-
rium values of fast variables as functions of the
slower ones. In the predator vulnerability example,
the rate equation for number of vulnerable prey is
dv/dt = k,(H - V) - k;V - aHP, and as noted above
this model has solution V = k,H/(k; + k, + aP)
when dV/dt = 0; it is quite useful to see that V
should be proportional to total prey population H,
and inversely proportional to predator abundance P.
In this example, the behavioral rate constants k;
and k, most often would imply equilibration of V on
time scales of hours, whereas H and P might vary on
much slower scales of weeks to years. Variable speed
splitting historically has been used widely in ecol-
ogy, for example, in derivation of predation func-
tional response equations like Holling’s (1965) disc
equation or its Michaelis-Menten equivalent, and
users of such equations often appear unaware of the
original arguments; by recognizing these argu-
ments, we see that they can be applied much more
widely to fast dynamic phenomena.

Analytical Integration over Microscale
Variation

Generally we approximate spatial (and temporal)
patterns through some sort of discretization scheme,
in terms of spatial pixels or slices of habitat (and

time steps); a serious logical error is to assume that
we have to treat events and patterns within such
pixels as homogeneous or random. Actually, when
we define a pixel-scale variable and its dynamics,
the only assumption that we must make is that we
can construct dynamics rules to represent the inte-
gral of finer-scale patterns/events over the pixel; by
thinking of the pixel-scale rules this way, often we
can easily design better integral relationships than
would result from assuming internal randomness or
evenness. For example, if we need to predict sedi-
ment resuspension rate from an area of river bot-
tom, we need not assume the bottom has homoge-
neous resuspension energy (velocity) or sediment
deposit composition; instead, we can view the total
rate as the integral over a heterogeneous field of
local energy/sediment composition sites, with statis-
tical or discretized (for example, pool vs riffle, slow
vs fast) description of the field. Like the example in
Figure 1, integral rates derived this way might differ
very considerably in form and pattern than would
be expected by thinking about any single, “typical”
physical situation (energy/composition combina-
tion) within the pixel.

Lagrangian Trajectory Sampling

In riparian ecosystems, many materials (and organ-
isms as drift) move rapidly downstream while under-
going various transformations and addition/re-
moval processes. Solving for total flux and spatial
concentration patterns can be an extremely difficult
computational problem in such settings (very short
space and time steps needed for numerical stability
of rate equations). There are two ways of describing
these processes. A Lagrangian approach follows a
parcel of water as it moves though space and time,
whereas a Eulerian approach describes the state of
the fluid at every point in space and time. Often we
can simply sidestep the “Eulerian box” (see Appen-
dix A.1.6; Pond and Pickard 1983) computational
problems by thinking carefully about where/when/
how often there are major changes in the space—
time concentration field, and computing only
enough space-time sample tracks to characterize
the overall field. Each of these sample tracks in-
volves a “Lagrangian” calculation: compute changes
over time in a representative spatial parcel of water
as it moves downstream through the space-time
field (Figure 2). Such tracking calculations often can
be done with analytical integrals over short river
reaches, with breaks at points where rapid changes
(such as tributary inputs) are expected; the rapid
changes then are treated as point disturbances in the
state variables. Similar ideas can be applied to
sampling of the more complex spatial patterns
arising from two- and three-dimensional hydrody-
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Figure 2. Description of Eulerian and Lagrangian methods for capturing dynamics of variables that are driven by processes
occurring over small spatial scales or time periods. The Eulerian approach (left) involves computing the change in the state
of all parcels of water (grid cells) over successive time periods. The Lagrangian approach (right) can be used to reduce
computational costs by computing changes over time in a representative spatial parcel of water (boxes) as it moves
downstream through the space-time field (the lines of the arrow represent the Eulerian grid) in a sample track (arrows).

namic models, though it obviously can become very
computationally costly to obtain adequate tracking
sample sizes.

Note that for each of the techniques outlined
above, the critical modeling step is not in application
of the technique, but rather in development of a
clear picture of the variables and scales (pixel sizes)
for which some technique might be needed or
useful. At least as an interim step in the model
development process, people involved in that pro-
cess must be willing to stop and say “OK, we are
stuck with these variables/pixels/scales; given these,
how can we most efficiently represent dynamic
variation.” In our experience, it can be extremely
difficult to obtain such consensus even for momen-
tary examination of a modeling option; many scien-
tists are unwilling or uninterested in stopping any-
where short of a fully satisfactory reductionist
description, even when it is obvious that the reduc-
tion process ultimately must fail due to incomplete
state information and chaotic behavior of some
microscale processes (for example, turbulence).

PRUNING UNNECESSARY COMPLEXITY
BASED ON PoLricy TESTS: MOVING
FROM MODELS TO STRONG QUALITATIVE
ARGUMENTS

In our experience with AEA processes, many scien-
tists seem to take for granted that the value of

explicit modeling is to produce precise, quantitative
predictions about the consequences of policy op-
tions, and furthermore that such predictions are
necessary for wise policy choice. This is a serious
misunderstanding about the nature of decision
making, particularly in settings where the primary
policy concern is about large-scale objectives, such
as “restoration of natural ecosystem function” or
“maintenance of biodiversity”. Prediction of some
sort is implied by the very notion of “choice”
(choices can only be compared by making some
assertion, that is, some prediction, about the conse-
quences of each), but it is a serious logical error to
suppose that predictions must be quantitatively
precise. For policy choice, what really matters is
only that the prediction method or model be accu-
rate enough about alternative outcomes to correctly
order the choices; most often, correct ordering re-
quires nothing more than knowledge of qualitative
outcomes (existence and direction of responses) or
ranges of outcomes (for example, policy A will
produce at least twice the response of policy B). This
means that the really valuable ecosystem models
generally are not those that make precise predic-
tions, but rather those that guide and focus policy
choice by helping to “prune” or “screen” options;
generally the power of such models in decision
making comes not from the numbers they generate,
but rather from the way they help structure clearer,
stronger qualitative arguments about the relative
efficacy of various options. An exception to this rule
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is where a successful policy must meet some absolute
standard.

Ecosystem modeling for water management in
the Grand Canyon provides an example of how
multiscale modeling can help screen options and
uncover potentially fatal flaws in some of them.
Before the modeling work, discussion about water
management options for protecting endangered fish
species had involved mainly predictions based on
assuming that restoration of more natural physical
habitat characteristics would lead to positive popula-
tion responses by species adapted to these character-
istics (for example, warming the water and restoring
natural seasonal flow and turbidity regimes should
help these warm-water species). But initial model
runs indicated exactly the opposite response, for
two reasons: (a) competition and predation effects
due to buildup in exotic species (brown trout,
channel catfish) that had become dominant in the
lower Colorado River even before construction of
Glen Canyon Dam; and (b) reduction in autochtho-
nous primary production in clear river waters below
the dam, which in recent years has likely offset loss
of allochthonous carbon sources in the headwaters
of the river basin (and that would not be restored
unless the dam were removed compelely, and possi-
bly not even then considering changes in headwa-
ters land use). In short, the model predicted that
negative trophic effects could more than offset any
benefits of physical habitat improvment; this argu-
ment had been made by some experienced scientists
in the system (for example, Valdez and Ryel 1995)
but apparently had not been taken very seriously in
impact assessments. Of course the argument may be
wrong, but at least we know that it should figure
prominently in design of future adaptive manage-
ment experiments and monitoring programs.

In this Grand Canyon setting there will doubtless
be much debate about the best approach to resolv-
ing uncertainty about negative trophic side effects of
physical habitat restoration. We have tried a reduc-
tionist approach, by modeling habitat linkages and
population dynamics of exotic fishes in some detail
(Walters and Korman 1999), to see if existing
knowledge about these fishes would permit a clear
yes-no impact prediction and to determine more
precisely what additional data would be needed to
make such a prediction. In our judgement, this is a
hopeless approach; there are just too many relation-
ships that would be difficult or impossible to quan-
tify through small-scale or comparative research
and too high a risk of overlooking some key relation-
ship entirely. The alternative approach for debate is
large-scale management experiments: try some
physical restoration options and directly monitor

overall responses to these. The main arguments
against this alternative (besides those from scientists
hungry for funding to study various relationships)
are (a) some treatment options are very expensive
to implement (for example, warm-water release
facilities at Glen Canyon Dam) and would require
expensive long-term monitoring programs to evalu-
ate; (b) experimental treatments are ecologically
“risky” (compared to maintaining status quo man-
agement policies while waiting for scientists to
somehow get the data needed for accurate model-
ing); and (c) the probability of detecting responses
from experimental treatments may be very low
given natural and measurement variability and
weaknesses in the design of the experiment (lack of
control, replication, and stratification) due to politi-
cal and institutional constraints. Unfortunately the
likely outcome of this debate will be a no-win
compromise: inadequate research investment com-
bined with modest (and largely uninformative)
experimental policies.

WHERE WE ARE STILL FAILING:
Bi1G EFFeCcTS FROM SMALL CAUSES
IN RIPARIAN SETTINGS

Despite considerable progress in development of
modeling methods for representation of cross-scale
dynamics and policy impacts, we still have much
difficulty making useful predictions about some
relationships that could be particularly important in
riparian settings. The following subsections review
three problems that have been particularly trouble-
some.

Propagation of Small Physical Changes
to Large Spatial Scales

River channels and associated floodplains have com-
plex microtopography that can change rapidly un-
der some flow regimes. This microtopography per-
mits much biological diversity and productivity; for
example, backwaters along the Colorado River are
extremely productive compared with the main river
channel and provide key habitats for various plant
species, juvenile fishes, and birds. But these backwa-
ters are linked to the main river by small channels
through unstable sandbars, so small changes in flow
can have severe impacts not only by cutting them
off from channel recharge during low flows and
scouring of bottom communities during higher flows,
but also by altering the channel structure and hence
the impact of future flows. In other words, there
are large, critical habitat areas whose basic long-
term dynamics depend on microscale dynamics of
spatial linkage. We can try to describe the linkage
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structure in terms of statistical patterns like flooded
area versus stage curves, but such relationships are
misleading if microtopography is subject to rapid
change (erosion—deposition dynamics) and are diffi-
cult to link to representations of ecological processes
such as succession.

Ecological Impact of Infrequent, Acute
Physical Transients

Often we need to link relatively “slow” biological
variables, such as vegetation establishment and
growth, to physical variables, such as, flow that
show complex, high-frequency variation. Usually
we attempt this linkage by using aggregate statistical
properties of such fast variables (for example, mean
flow) on the assumption that slower variables are
unable to “see” or respond to most of the high-
frequency variation. But this assumption is only
valid if slow variable responses are linear (smooth
and incremental) over all values of the fast vari-
ables; if there are response threshholds or highly
nonlinear responses to extreme variable values,
long time scale averages may be very misleading.
For example, even very short duration flow “spikes”
or experimental releases can kill some riparian
plants or cause scouring that uproots plants and
alters substrate structure (soil particle size distribu-
tion and organic content) in complex ways. Obvi-
ously we can represent such cross-scale impacts as
“event” changes in state of slow variables, with
consequent recovery dynamics at longer time scales.
But the modeling/measurement problem then be-
comes how to predict state response to the event,
and we seldom have enough historical data on such
event responses to provide empirical relationships
that cover an adequate range of possible duration—
intensity combinations (especially for experimental
flow management regimes that deliberately create
flow regimes that are outside of recent historical
experience). We can try a reductionist approach by
decomposing the event response into possibly more
predictable components (acute physiological effects,
substrate changes, etc.), but usually such decompo-
sitions reveal a daunting tangle of detailed re-
sponses and uncertainties that would be impractical
to eliminate through comprehensive process experi-
mentation.

Population—-Habitat Interactions Associated
with Ontogenetic Shifts

To be useful in most riparian policy settings, ecosys-
tem-scale analyses of physical and trophic change
have to be combined with (interfaced to) more
detailed evaluation of impact on particular target
species that have high use value (recreational fisher-

ies) or are legally mandated for protection (threat-
ened and endangered species). Such species usually
have complex life histories, sometimes involving
seasonal migrations to spawn or breed (and perhaps
overwinter) at particular sites and almost always
involving ontogenetic shifts in habitat use by indi-
viduals as they grow and become capable of avoid-
ing more predators and exploiting a wider range of
food resources. Animal movements associated with
these life history shifts can create strong cross-scale
effects: even very short duration movements can
expose animals to complex physical and biological
impacts at quite large spatial scales or in particular
spatial locations. For example, endangered hump-
back chub in the Colorado River migrate mainly
into one major tributary [Little Colorado River
(LCR)] to spawn; small juveniles dispersing down-
stream in the LCR encounter a variety of risks from
introduced fish species, and particularly high risk for
a short time when/if they enter the mainstem
Colorado where they are likely to encounter a
sudden temperature drop that may impair swim-
ming and escape behaviors. An obvious tactic for
such species is to use individual-based models (IBMs)
to “sample” the space-time trajectories of risks and
opportunities associated with alternative policy
choices (that is, different flow regimes and tempera-
tures); but this approach quickly becomes too costly
(data requirements, model development, and delay
in policy implementation) when a whole suite of
species require such special attention. Also, the
sampling process may require a fairly detailed space—
time representation of biophysical conditions en-
countered by individuals.

So far we have approached ecosystem modeling
exercises in places like the Everglades and the Grand
Canyon with hope that we will encounter only a
limited number of nasty cross-scale prediction prob-
lems of these three types, and that these few
problems can be approached through a combination
of more detailed modeling and carefully focused
field observations and experiments. Experience to
date supports this hope, but that experience is very
limited.

CONCLUSIONS

Ecosystem modeling for riparian policy analysis can
be approached with a variety of aims, from simple
screening of broad policy options (to demonstrate
that simplistic “Band aid” policies are unlikely to
succeed) to detailed quantification of tradeoffs
among multiple performance measures. Despite
various pitfalls in variable identification and repre-
sentation of cross-scale linkages as discussed in this
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article, our capability to meet the simpler aims has
improved dramatically over the last 20 years. We
can even represent some tradeoffs with consider-
able precision (for example, power production value
vs recruitment of some fish species) in settings
where historical management changes and monitor-
ing/research have provided a good empirical basis
for testing key functional relationships that define
the tradeoffs. The real challenge will be to see
whether we can move beyond those cases where
the modeling just tells us what we already know
from experience, to make useful predictions about
situations where experience and data are severely
limited.

Restoration alternatives for riparian ecosystems
in almost all cases highlight conflicting water require-
ments among resources. The most obvious conflicts
involve perceived or real ecological benefits associ-
ated with a more natural hydrograph that must be
traded off against financial losses in power genera-
tion and flood control. However, there are often
conflicting requirements among ecological compo-
nents; particular hydrographs and other restoration
options (temperature and water clarity) may be
beneficial to one species but harmful to another. In
the Grand Canyon example, temperature and flow
regimes considered beneficial for native fish are
likely devastating for a highly productive tailwater
rainbow trout population that supports a blue rib-
bon fishery. Making decisions in the face of such
resource tradeoffs is an extremely difficult task and
must involve assigning a value to each resource and
how this value changes with changes in the re-
source. When faced with this situation, it is not our
inability to precisely model these resource tradeoffs,
but the inability of institutions to deal with this issue
that is the biggest impediment to making a decision.
The modeling approaches we advocate in this article
allow relatively rapid model development (that is, 1
or 2 y) to highlight key uncertainties and to help
develop an experimental management program. In
the long term, the model development process is an
iterative one: (a) an initial model is formulated and
uncertainties are identified; (b) experimental man-
agement and monitoring is implemented to resolve
these uncertainties; and (c) the model is revised
based on these data and the cycle is continued.

Detailed and time-consuming modeling activities
may not only be misleading but provide an excuse
for continued procrastination of institutions resis-
tant to making changes in current management
practices.
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